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Abstract. Two sub-series of Mayer’s virial series are summed to infinite order. The 
resulting equations are a natural generalization of the Bethe-Peierls-Guggenheim approxi- 
mation. They are solved for three simple yet non-trivial cases to illustrate the physics 
involved. It seems that both vacancies and the strong correlations of neighbouringparticles 
have been taken into account simultaneously. 

1. Introduction 

In a previous article (Wu 1975a) a mean-field approximation (MF) for concentrated 
solid solutions was obtained by summing a sub-series of Mayer’s virial series (Salpeter 
1958) to infinite order. The resulting equation has an appearance which suggests itself 
as a proper generalization of Lennard-Jones’ cell model (Barker 1963). Like the cell 
model our MF neglects particle correlation between different lattice sites. In the present 
paper we go one step further by summing the next sub-series. We obtain a complicated 
algebraic integral equation. If multipole expansion (Wu 1975b) is executed and the 
monopole alone is retained the equation reduces to the well known Bethe-Peierls- 
Guggenheim approximation (Wu 1976). 

2. Ibe self-potential of a pair of lattice sites 

The same solid solution and the same notation as in Wu (1975a) are used in the present 
paper. The self-potential of a single site was obtained previously (Wu 1975b). Let us 
apply the same method to sum the next sub-series. Let a pair of sites be denoted by ill 
and i12 respectively. The grand partition function Z* of the reference system (Wu 
1975b) is truncated because the pair can at most accommodate two atoms only. 
Therefore 
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The following abbreviations have been used: 

1 : a vector within R, 

zi (1) = - exp[-P ( c(1) - ui) ]  
1 

Vi 

and similar definitions for 2 and zi(2), eij(l, 2) is related to Mayer’s f function by 

eij(l, 2) =fi,(l, 2)+ 1 = exp(-pVI,.(l, 2)). (2) 
Differentiating l n Z *  with respect to Inz i ( l )  and Inzi(2) one obtains the density 
functions pi(l) and pi(2) as 

(3) 
p i ( l ) = F z , ( l ) ( 1 + x  1 J d2zj(Z)eij(l,2)) 

1 

and other 

where ‘and other’ stands for the other equation which can be obtained by permuting 1 
and 2 in the above equation. Let pij(l, 2) be defined by 

(4) 
1 

pij(l, 2) = -z.(1)zj(2)eii(1, 2); z* I 

then (3) is easily converted into 

and other. 

Combining ( l ) ,  (4) and ( 5 )  one obtains 

1 -e1- e,+ eI2 1 
z* 
-= 

where el and O2 are given by 



A beyond -mean -field approximation 73 

Comparing (9) with (3.6) of Wu (1975b) one obtains the self-potential at 1 of ith species 
as 

-‘E E I d l ’ I  d2hj ( l ,  2)hmj(1‘, 2)). 
1-01, j 

It is easily recognized that the first term is the self-potential of the single lattice site 
obtained previously. It is the sum of virial series of the internal field (Wu 1975b, 
equation (3.2)) restricting all dummy variables to within fl,. On the other hand total 
expression (1 1) is the sum of virial series restricting all dummy variables to within fll 
and f12. Hence the second term of (ll), which is the difference between the two sums 
just mentioned, can be considered as the net contribution to the internal field from the 
pair fl, and flz. It is the sum of the virial series restricting all dummy variables to lie 
within either fl, or f12 plus the condition that at least one of the dummy variables is 
within a2. This term is zero unless fl, and flz are within interaction range because of the 
factorfij(l, 2). Summing all the contributions from neighbouringsites of fll one obtains 
an approximation to the internal field (Wu 1976): 

- p v ( l )  = In( 1 - e,) +I’ In( 1 +? I d2hj(l, 2)pj(2) 

where 2’ means summing over neighbouring sites. To express hmj(l, 2) in terms of pi(l), 
pj(2) and hj( l ,  2) one divides (4) by Z* and then substitutes (6) and ( 5 )  into it to 
eliminate Z*, z,(l) and zj(2). Afterwards (10) is used to obtain the following equation: 

For each pair of i , j  there is an equation of (13). For a system of n-species there are 
n x n  of them. They are simultaneous non-linear integral equations for hij(l, 2). If 
they are solved and substituted in (12) then an approximation to the internal field is 
obtained. Hence summing the next sub-series is equivalent to solving (13). 
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3. Physical implications via simple examples 

Equation (13) is quite complicated. In this section its physical implications are explored 
by considering three cases where it can be solved easily. 

3.1. Bethe-Peierls-Guggenheim approximation 

If only monopoles are considered then ~ ~ ( 1 )  and pj(2)  become S functions centred at 
equilibrium positions. hi j ( l ,  2 )  can be written as product of S functions. After proper 
integrations to eliminate S functions equation (13) becomes an algebraic equation for 
the strengths of 6 functions. If only one species is considered then the equation 
becomes 

h = (e, - e1e2-h)(e2- e1e2 - h ) f  (15) 
where h denotes D(1- O , > ( l -  8,). This is a quadratic equation and is easy to solve. It 
was mentioned previously (Wu 1975a) that the lattice gas model can be derived from 
virial series by taking monopole approximation. It was further shown (Rushbrooke and 
Scoins 1955, Wu 1976) that for the lattice gas model equation (12), which is obtained by 
summing two sub-series, is equivalent to the Bethe-Peierls-Guggenheim approxima- 
tion. Thus equations (12) and (13) together constitute a natural generalization of the 
Bethe-Peierls-Guggenheim approximation. Since this approximation takes short- 
range order into account so do equations (12) and (13). 

3.2. The fluctuation of internal field 

If the distance between 0, and R, is larger than the hard-core diameters then one can 
solve hi j ( l ,  2 )  in powers of Mayer’s f function. To do this let us adopt the following 
abbreviations: 

i J  

( 0 i j ) Z  = d2 o i j (1 ,2)  

((Oij)) C<Oij>,>2 

where Oi,(l,  2)  is a function of i, j ,  1 and 2.  In (13) if hj(l ,  2 )  is a small parameter then 
hi j ( l ,  2 )  and hence D are of first order. If orders higher than first in (13) are dropped 
on6 obtains 

Applying ((. . .)) to equation (16) one obtains 

((hij))= (1- el)(l-  &4(Pi(l)~j(2)fi j));  

applying (. . to (16) and using the above result one gets 
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To express the internal field in powers of pvi,(l, 2) one substitutes (17) into (12), 
expands the second logarithm of (12) in powers of fu(l, 2) and then expands fi,(l, 2) in 
powers of -pVij(l, 2). To second order one obtains: 

-~v(l) = In (1 - e , )  - p  1’ ( v i ( l ,  2)pi(2)), 

+$P’ C’ ((~$1,2)~j(2))2-(~j(1,2)pj(2)>3 

+P’ C’ ((((Kj(1, 2 ) v m k ( l f 9  2 ’ )pi (2)pm(l f )~k(2’ ) )1 ’}2’ )2  

-(( (1, 2) vmk (1’9 2)Pm ( 1 ’ ) P k  (2))1’)2). (18) 

The second term is the mean field obtained previously (Wu 1975a). The third and 
fourth terms are the fluctuation fields. They vanish if there is a particle of jth species 
within f12 and it does not move. In the monopole approximation (18) reproduces the 
high-temperature series, for the lattice gas model, up to second order (Wu 1972). This 
is the first time that the fluctuation field has been derived since the inception of the 
Lennard-Jones cell model (Barker 1963). 

3.3. The system of hard rods 

Equations (12) and (13) together are equivalent to summing two sub-series of virial 
series. It was shown that this is equivalent to: making the Bethe-Peierls-Guggenheim 
approximation (Rushbrooke and Scoins 1955, Wu 1976) which is exact for a Bethe 
lattice. Thus equations (12) and (13) are exact for a Bethe lattice if interstitial atoms are 
not considered. Now, a one-dimensional system with nearest-neighbour interactions is 
a Bethe lattice of coordination number two. Hence (12) and (13) should yield exact 
results for such systems. In the appendix we demonstrate this for the system of hard 
rods. This example indicates that equations (12) and (13) are capable of handling the 
hard-core interaction which the mean-field (perturbational) approach of Q 3.2 is not. 

4. Discussion 

From the three examples of Q 3 one can now understand why equation (13) has such a 
complicated appearance. 

It is because both vacancies and correlations between neighbouring particles are 
considered simultaneously. As vacancies are taken into account already in the mean- 
field approximation (Wu 1975a) the vacancy pair’s contribution should be contained 
within (18). To conclude let us mention that the bulk of theories on quantum crystals 
(Werthamer 1969) is concerned with correlation between neighbouring particles. Most 
of these theories are based on variational principles of ambiguous accuracies. Our 
approach to classical correlation could be relevant to the problem. In particular the 
vacancies, which are very difficult to deal with by other methods, are contained 
naturally in our equations. 
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Appendix. Exact solution for a system of hard rods 

Let the real number axis be divided into intervals of equal length ‘ U ’  which is the length 
of a rod. Then each interval can at most accommodate one rod. Hence the intervals can 
be regarded as the a(R) of Wu (1975a). There are no interstitial particles because the 
R fill the whole real line. Let RI be the interval [0, a] and R2 the interval [a, 2a]. Let x 
be a point in a, and y in R,. Both of them will be measured from the centres of their 
respective intervals. Then the following facts are obvious: 

where 6 is the total number of particles within an interval. Dividing (4) by Z* and using 
( 5 )  and (6) one obtains 

(1 - 26 + / dx’ dy’ p W, y’))p(x, y )  = ( p  - dy’ p(x, y’)) ( p  - / dx’ p ( x ’ ,  y))e(x, y). 

Denoting the expression within the first brackets on the right-hand side of (A.2) by F ( x )  
and using (A. 1) one obtains 

(A.2) 

Q/ 2 

( 1 - 4 a / 2  dx’F(x?)p(x, y) = F(x)F(-y)e(x, Y). 

dx’F(x’))(p - F ( x ) )  = F ( x )  F(x’) dx’. (A.4) 
(1 - - La/2 Ji 

(-4.3) 

Integrating the y variable one obtains 
Q/2 --x 

Setting x = - 4 2  in (A.4) one can solve for the integral of F(x’) over [-a/2, a/2]. 
Substituting this back into (A.4) one obtains 

Combining (12) with (1) of Wu (1975a) one obtains 

Substituting (A.5) into (A.6) one has 

p = eea(l - e )  

Setting x = -a /2  in (A.7) one obtains 

Substituting this back into (A.7) one obtains 

(A.7) 

F ( x )  = F( -4) +p 1‘ dx’ F(x’) .  
-Q/2 

(‘4.9) 
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Hence 

From (A.4) one obtains that 

F(a /2 )  = p. 

This, with (A.lO) and (A.8), gives one 
= e P ~ ( l  - 6 )  e-e/(l-e). 

Using (A. 11) to integrate the thermodynamical identity 

one recovers the well known equation of state: 
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